

SRNL-STI-2021-00112

Savannah River Site Environmental Monitoring Program

History and Overview of Effluent Monitoring and Environmental Surveillance at SRS

Tim Jannik Fellow Technical Advisor, SRNL Teresa Eddy Manager, Environmental Monitoring Programs, SRNS

SRS and the Environment March 3, 2021

- Construction started in 1953, primarily to produce tritium and plutonium for nuclear weapons
- Located in SC, ~ 24 mi. SE of Augusta, GA
- 310 mi² with more than 90% forest
- 16 operational areas
- Current primary activities:
 - Tritium processing for nuclear weapons
 - Liquid waste processing
 - Environmental management
 - Plutonium management
 - Research and development (SRNL)

- SRS EM Video
- Environmental Monitoring (EM) Purpose
- Savannah River Site EM Program Description
- Recent SRS EM Results
- Historical Trends of Key SRS Radioisotopes and Biota

- Comply with regulations and laws
- Determine pre-operational conditions
- Measure potential impacts of releases
 Current and legacy
- Determine effectiveness of cleanup projects
- Perform dose and risk assessments
- Inform stakeholders of environmental quality

- Pre-operational surveillance
 - Provide a baseline of background concentrations and a framework for the operational environmental monitoring program
- Monitoring and surveillance of ongoing operations and legacy contamination
 - Compliance Monitoring
 - Air and liquid effluent sampling and analysis
 - Environmental media and biota
 - Meteorological monitoring
- Monitoring capabilities for unplanned releases
 - Real-time meteorological monitoring and modeling
 - Protect members of the public in recovery
 - Determine the impacted areas
- Post-operational surveillance
 - Meet decommissioning requirements
 - Control future exposures to the members of the public and the environment

 Three main components – Effluent Monitoring, Environmental Surveillance, and Meteorological Monitoring

General Environmental Monitoring Program Components

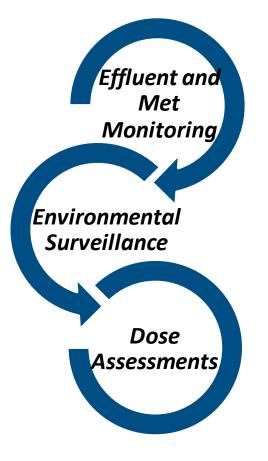
- Effluent Monitoring Monitor releases to the environment at the point of discharge
 - Radiological Effluent Monitoring
 - Air releases from facility stacks
 - Liquid releases from facility outfalls
 - Nonradiological Effluent Monitoring
 - Air releases estimated from standard models
 - Liquid releases from facility outfalls (NPDES)

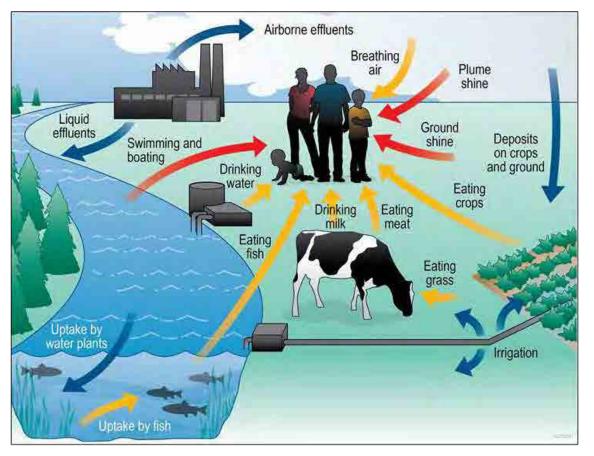
- Environmental Surveillance Performed beyond the point of discharge
 - Radiological Surveillance
 - Environmental sampling and analysis
 - Air, water (streams, rivers, basins), foodstuffs, soil, sediment, drinking water, vegetation, wildlife
 - Nonradiological Surveillance
 - Facility drinking water
 - Environmental sampling and analysis
 - Fish, streams, river, deposition, and rainwater

General Environmental Monitoring Program Components

Meteorological Monitoring

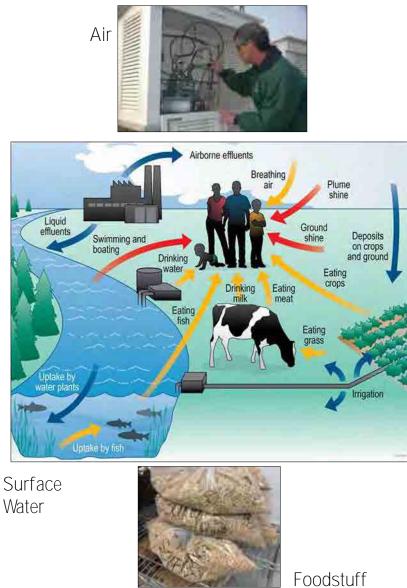
- Provide historical and real-time Met data
 - Routine releases (transport and diffusion)
 - Unplanned releases (emergency response)
 - Facility design analysis (severe conditions)

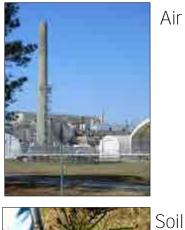




1. Determine bas					
What's the objective of the monitoring and surveillance effort? Pre-operational	2. Determine the Define and	Regulatory requirements Preparation for			
	understand the regulations and requirements	Identify critical exposure pathways and radionuclides			
monitoring been performed?		Determine the source term Usage of site and area characteristics	temporal boundaries for monitoring are established	data reporting, and action levels Data	members of the public
		from pre- operational data, discharge rates, meteorological data, lifestyle, food and water consumption data	Define surveillance points and frequency	interpretation and reporting process	
			Determine if data be collected by periodic, integrating, or continuous measurement		

Environmental Monitoring Sampling Media

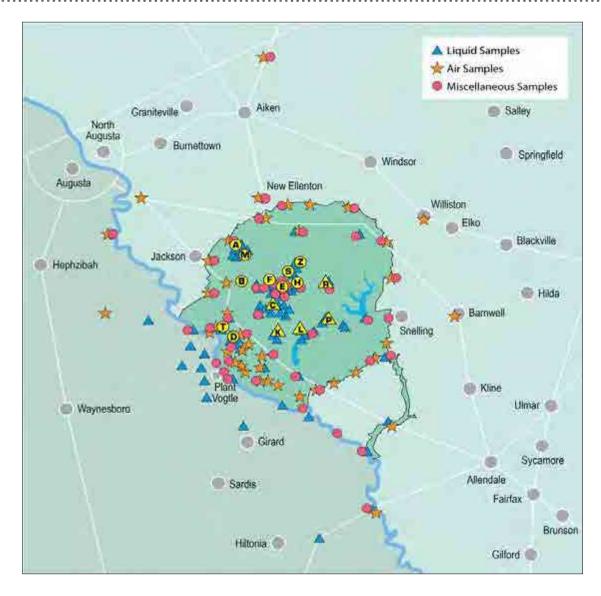

Fish



Wildlife

Air

Vegetation

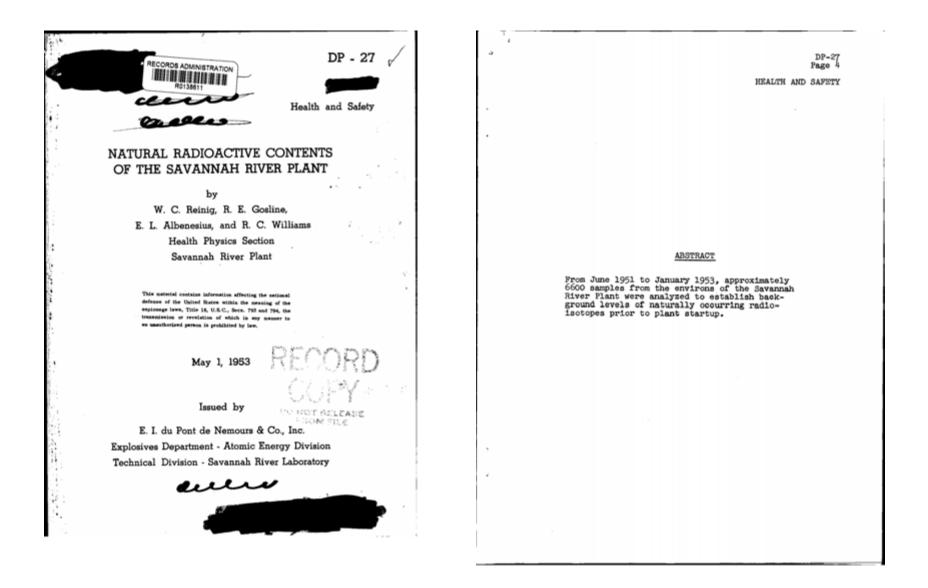

Savannah River National Laboratory UPERATED BY SAVABABE RIVER BULLEAR SOLUTIONS

We put science to work."

- SRS has performed environmental monitoring for more than 60 years
 - Assess impact to the public and environment from Site operations
 - Monitor facility discharges
 - Extensive on- and off-site surveillance, extending to Savannah, GA
 - Sample media: air, water, groundwater, soil, food products (including fish), and vegetation
 - Chemical
 - Radiological
 - Extensive meteorological monitoring

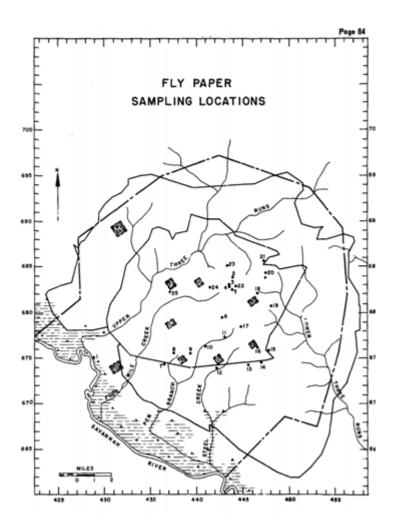
Current SRS Environmental Monitoring – Overall Monitoring Locations

Savannah River National Laboratory


- Environmental baseline studies during the 1950s included:
 - Scientists from the Universities of Georgia and South Carolina
 - Collected baseline data on plant and animal communities (Dr. Rhodes' talk)
 - Team from the Academy of Natural Sciences in Philadelphia under the leadership of Dr. Ruth Patrick
 - Performed a biological study of the Savannah River
 - DuPont's Site Survey team of Health Physics personnel (Reinig et. al.)
 - Completed a landmark study of local natural radioactivity at SRS in 1953

Dr. Ruth Patrick, pioneer in studying the health of freshwater streams and rivers and member of the Academy of Natural Sciences

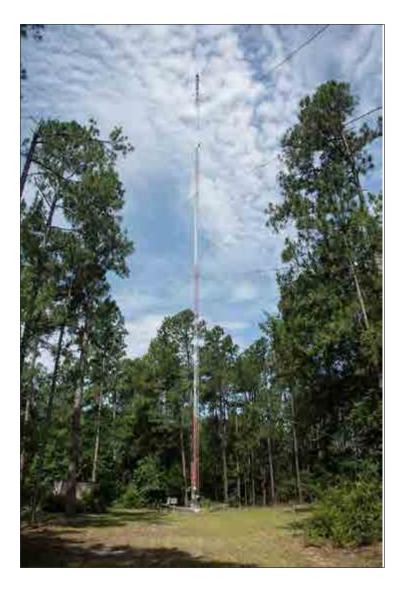


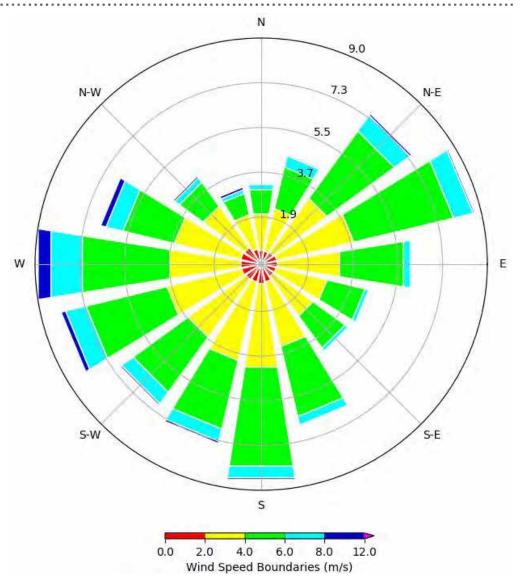

History of SRS Environmental Monitoring

Savannah River National Laboratory

History of SRS Environmental Monitoring



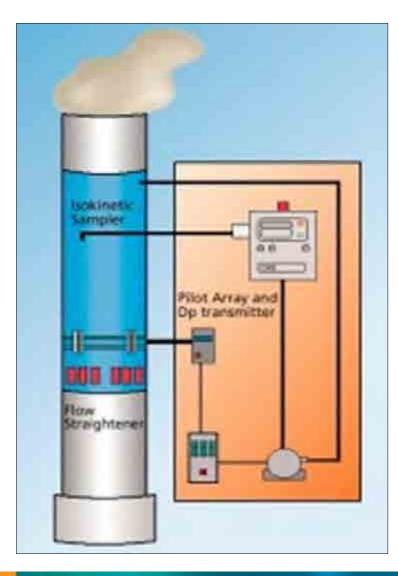

Savannah River National Laboratory


Current SRS Environmental Monitoring – Meteorological Monitoring

- Eight 200-foot area towers
 - <0.5 miles from area</p>
 - Same elevation
 - Undisturbed forest canopy
- Two research towers
 - WJBF (1,080-foot)
 - NOAA Carbon Tracker Tower
 - Flux Tower (Forestry support...)
- Central climatology
 - Comprehensive instrumentation

Meteorological Monitoring

- WIND (Weather Information and Display System)
 - Integral part of the Site's and U.S. Southeast Regional's emergency response capabilities


https://weather.srs.gov/atg/static/pdf/SRNL-TR-2020-00197.pdf

- Airborne effluents can be in the form of gases, particles suspended in gases, or vapors
- Program design framework comes from national standards for performance
 - ANSI/HPS N13.1-2011
 - ISO-2889-2010
- Regulations
 - EPA's National Emission Standards for Hazardous Air Pollutants (NESHAP), Clean Air Act (CAA)
 - DOE Order 458.1
- Radiological Monitoring
 - Sampling and analysis or inline monitoring (tritium)
- Nonradiological
 - No continuous monitoring (some periodic checks)
 - Standard EPA required modeling techniques
 - Facility inventories and Met data

Air Effluent Monitoring – Isokinetic Sampling

Isokinetic Sampling Probes

Air Effluent Sampling - Air Filter Collection and Lab Analysis

SRS has a state-of-the-art Environmental and Bioassay Laboratory located onsite in B Area

We put science to work."

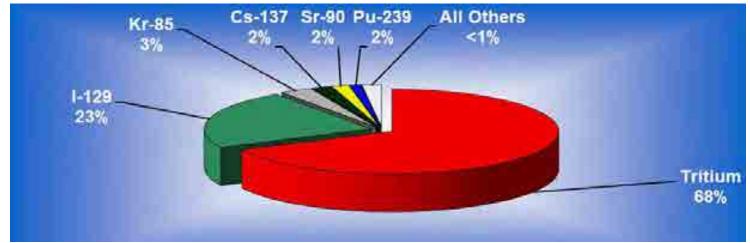
Potential Impact Category (PIC Level)	Monitoring and Sampling Criteria	PEDE (mrem/yr)	Actual EDE (mrem/yr)
1	Continuous sampling and to include a real time monitor and alarm	>0.1	>1E-02
2	Continuous Sampling and off-line periodic analysis	>0.1	≤1E-02
3	Periodic quarterly sampling and off-line analysis	≤0.1	>1E-05
4	Annual administrative review of facility uses to confirm absence of radioactive materials in forms and quantities not conforming to prescribed specification and/or limits	≤0.1	≤1E-05

SRS currently has:

- 2 PIC level 2 airborne sources (291-H & 291-F)
- 15 PIC level 3 airborne sources (H Area, SRNL, L Area, K Area, C Area, F Area)
- 177 PIC level 4 airborne sources (many Tank Farm tanks)

2019 Airborne Effluent Releases of Gases and Vapors

Radionuclide	Half-Lif	e	Calculated	Reactors	Separations	SRNL	Total	
	Gases and Vapors (Curies)							
H-3 (oxide)	12.3	у	2.46E+02	9.85E+02	6.71E+03		7.94E+03	
H-3 (elemental)	12.3	у			1.31E+03		1.31E+03	
H-3 Total	12.3	у	2.46E+02	9.85E+02	8.02E+03		9.25E+03	
C-14	5700	у	9.48E-08		5.00E-02		5.00E-02	
Hg-203	46.6	d	6.51E-10				6.51E-10	
Kr-85	10.8	у			1.07E+04		1.07E+04	
I-129	1.57E+07	у	4.31E-05		9.95E-03	8.67E-07	9.99E-03	
I-131	8.02	d	7.01E-10				7.01E-10	


2019 Total for All 76 Reported Airborne Effluent Particulate Radionuclides is < 0.1 Curie

Potential Doses to the Representative Person and to the NESHAP MEI from SRS Atmospheric Releases in 2019 and Comparison to the Applicable Dose Standard

	MAXDOSE-SR Site Boundary DOE 458.1	CAP88-PC (EPA NESHAP) Site Boundary	CAP88-PC (EPA NESHAP) TRL Worker
Calculated dose (mrem)	0.018	0.018	0.0097
Applicable Standard (mrem)	10 ^(a)	10 ^(b)	10 ^(a)
Percent of Standard (%)	0.18	0.18	0.097

Radionuclide Contributions to the 2019 SRS Air Pathway Dose of 0.018 mrem (0.00018 mSv)

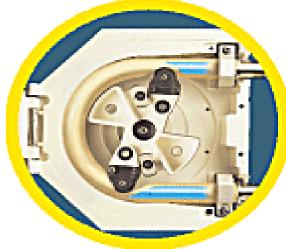
Current SRS Environmental Monitoring – Liquid Effluent Monitoring

- Regulations
 - DOE Order 458.1
 - EPA's Clean Water Act (CWA)
 - National Pollution Discharge Elimination System (NPDES)
 - Enforced by SCDHEC
- Program design is from DOE guidance and NPDES requirements
 - Source categories similar to NESHAP
- Water monitoring design alternatives
 - Online monitoring systems
 - Periodic grab sampling
 - Flow proportional sampling of water
 - Time proportional sampling of water
- Radiological and nonradiological
 - Similar monitoring systems

- SCDHEC (USEPA) inspects all mandated activities
 - Compliance Evaluation Inspection (CEI)
 - Compliance Sampling Inspection (CSI)
 - Performance Audit Inspection (PAI)
 - Lab Certification
- Compliance is reported through monthly Discharge Monitor Reporting to SCDHEC and in the Annual Site Environmental Report (ASER)

Visual assessment of an industrial stormwater outfall sample

Field technician collects a compliance sample at an industrial wastewater outfall



Liquid Effluent Monitoring – Timed Integrated Sampling

Peristaltic Pump

Category	Sum of Fractions of DCS	Dose
I	Greater than 1.0	>100 mrem/year
II	Greater than 0.1, but less than 1.0	10-100 mrem/year
ш	Greater than 0.001, but less than 0.1	>0.1- <10 mrem/year
IV	Less than 0.001, but radionuclide inventory is above the limits	<0.1 mrem/year
V	Less than 0.001 and radionuclide inventory is below the limits	<0.1mrem/year

SRS currently has:

- 5 level 2 category liquid effluent sources (F Area, H Area, S Area)
- 12 level 3 category liquid effluent sources (A Area, F Area, H Area, K Area, L Area, S Area)

2019 Radioactive Liquid Releases by Site Stream - (Curies)

	Upper Three Runs	FourMile Branch	Pen Branch	Lower Three Runs	
Nuclide	(A,M,F,H)	(F,H,SRTE)	(K,L)	(P , R)	Totals
H-3 ^a	8.11E+01	2.14E+02	1.29E+02	2.99E-01	4.52E+02
C-14	3.43E-04	1.50E-02			1.53E-02
Sr-90	1.51E-06	1.31E-02	0.00E+00		1.31E-02
Tc-99	0.00E+00	1.66E-02			1.66E-02
I-129	0.00E+00	8.92E-03			8.92E-03
Cs-137	1.17E-04	8.12E-03	0.00E+00	0.00E+00	2.10E-01
Ra-226	1.82E-02	1.11E-03			1.93E-02
U-234	3.62E-04	2.50E-07			3.62E-04
U-235	2.07E-02	1.37E-03			2.20E-02
U-238	0.00E+00	8.61E-05			8.61E-05
Np-237	1.70E-05	1.04E-04			1.21E-04
Pu-238	3.93E-06	5.45E-06			9.38E-06
Pu-239	0.00E+00	1.16E-05			1.16E-05
Am-241	0.00E+00	2.17E-06			2.17E-06
Cm-244		2.32E-03			2.32E-03
Alpha	6.79E-04	3.72E-04	0.00E+00	3.86E-03	4.91E-03
Beta	1.97E-03	1.67E-03	2.06E-02	1.75E-02	4.18E-02